Legacy Database Migration | CONFIDENTIAL

LEGACY DATABASE
MIGRATION PATTERNS

SQL Server • Oracle • Teradata • DB2 • Assessment • Patterns

Version 1.0 | January 2026

Table of Contents

1. Migration Assessment
Before migrating legacy databases to Fabric, conduct a thorough assessment to understand complexity, dependencies, and migration approach.
1.1 Assessment Checklist
1. ☐ Database size (tables, rows, storage)
1. ☐ Schema complexity (tables, views, procedures)
1. ☐ Data types requiring conversion
1. ☐ Stored procedure/function inventory
1. ☐ Dependencies (jobs, applications, reports)
1. ☐ Performance requirements (SLAs)
1. ☐ Security and compliance requirements
1.2 Target Architecture Decision
	Scenario
	Fabric Target
	Rationale

	Data Warehouse
	Fabric Warehouse
	T-SQL compatibility

	Data Lake / Big Data
	Lakehouse
	Schema flexibility

	Mixed workloads
	Lakehouse + Warehouse
	Best of both

	Real-time analytics
	KQL Database
	Sub-second queries

2. SQL Server Migration
2.1 Connection Setup
Pipeline: Copy from SQL Server to Lakehouse
Source: SQL Server (on-premises via gateway)
Destination: Lakehouse Delta table

Gateway configuration required for on-premises
Use managed identity for Azure SQL Database
2.2 Data Type Mapping
	SQL Server
	Fabric Warehouse
	Lakehouse (Delta)

	INT
	INT
	INT

	BIGINT
	BIGINT
	LONG

	VARCHAR(n)
	VARCHAR(n)
	STRING

	DATETIME
	DATETIME2
	TIMESTAMP

	DECIMAL(p,s)
	DECIMAL(p,s)
	DECIMAL(p,s)

	BIT
	BIT
	BOOLEAN

2.3 Stored Procedure Migration
-- SQL Server Stored Procedure
CREATE PROCEDURE usp_ProcessClaims @ProcessDate DATE
AS BEGIN
 INSERT INTO gold.claims_summary
 SELECT region, SUM(amount)
 FROM silver.claims WHERE date = @ProcessDate
 GROUP BY region;
END

-- Fabric Warehouse (similar T-SQL)
CREATE PROCEDURE gold.usp_ProcessClaims @ProcessDate DATE
AS BEGIN
 -- Same logic works in Fabric Warehouse
END

3. Oracle Migration
3.1 Oracle-Specific Considerations
1. Convert PL/SQL to T-SQL or PySpark
1. Handle Oracle sequences (use IDENTITY)
1. Convert Oracle date functions
1. Migrate materialized views to Fabric tables
1. Convert synonyms to views or shortcuts
3.2 Function Mapping
	Oracle
	Fabric (T-SQL / PySpark)

	NVL(a, b)
	ISNULL(a, b) / coalesce(a, b)

	SYSDATE
	GETDATE() / current_timestamp()

	TO_DATE(str, fmt)
	CONVERT(DATE, str) / to_date(str, fmt)

	DECODE()
	CASE WHEN / when().otherwise()

	ROWNUM
	ROW_NUMBER() OVER() / row_number()

	|| (concat)
	+ or CONCAT() / concat()

4. Teradata Migration
4.1 Teradata Considerations
1. Replace BTEQ scripts with Notebooks/Pipelines
1. Convert Teradata SQL extensions
1. Handle SET tables (distinct rows)
1. Migrate FastLoad/MultiLoad to Copy Activity
1. Convert Teradata macros to stored procedures
4.2 SQL Differences
	Teradata
	Fabric

	QUALIFY ROW_NUMBER()=1
	Subquery with ROW_NUMBER

	DATE '2024-01-01'
	'2024-01-01' or CAST()

	EXTRACT(YEAR FROM dt)
	YEAR(dt)

	SAMPLE 100
	TOP 100 / TABLESAMPLE

	ZEROIFNULL(x)
	ISNULL(x, 0)

4.3 QUALIFY Conversion
-- Teradata
SELECT * FROM claims
QUALIFY ROW_NUMBER() OVER (PARTITION BY member_id
 ORDER BY service_date DESC) = 1;

-- Fabric T-SQL
WITH ranked AS (
 SELECT *, ROW_NUMBER() OVER (PARTITION BY member_id
 ORDER BY service_date DESC) AS rn
 FROM claims
)
SELECT * FROM ranked WHERE rn = 1;

5. Migration Patterns
5.1 Full Load Pattern
Pipeline: Full_Load_Table

1. Truncate Target (if exists)
2. Copy Activity: Source → Lakehouse Bronze
3. Notebook: Bronze → Silver (cleanse)
4. Notebook: Silver → Gold (transform)
5. Validation: Row count check
5.2 Incremental Load Pattern
Pipeline: Incremental_Load

1. Get Watermark: Last processed timestamp
2. Copy Activity: WHERE modified_date > @watermark
3. Merge: MERGE INTO target USING source
4. Update Watermark: Set new high value
5. Validation: Compare counts
5.3 Change Data Capture Pattern
Pipeline: CDC_Load

1. Read CDC table from source
2. Apply changes based on operation type:
 - INSERT: Add new rows
 - UPDATE: Merge changes
 - DELETE: Soft delete or remove
3. Track CDC LSN for next run

6. Best Practices
6.1 Migration Guidelines
1. Start with non-critical tables for validation
1. Migrate schema first, then data
1. Run parallel loads to reduce downtime
1. Validate row counts and checksums
1. Test all dependent applications
1. Plan cutover window carefully
6.2 Performance Optimization
1. Use parallel copy activities
1. Partition large tables during migration
1. Optimize network (ExpressRoute for on-prem)
1. Use appropriate DIU settings
1. Schedule during off-peak hours
6.3 Common Challenges
	Challenge
	Solution

	Data type incompatibility
	Map to compatible types, cast as needed

	Stored procedure logic
	Convert to T-SQL or Notebooks

	Large table migration
	Partition, parallel copy, incremental

	Downtime constraints
	CDC-based migration, cutover window

Appendix: Document Information
	Document Title
	Legacy Database Migration Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
